

The Pierre Auger Project

Capturing Messengers from the Extreme Universe

A progress report

P. Mantsch 27 March 2003

Flux $(m^2 sr s eV)^{-1}$

Cosmic Ray Spectrum

Over the past
40 years
~15 events with
>10²⁰ eV

Highest energy event: $3.2 \times 10^{20} \text{ eV}$ Fly's Eye in Utah in 1991

Cosmic Ray Data at the highest energies

Possible Sources

Conventional – Bottoms-Up Hot spots in radio galaxy lobes? Accretion shocks in active galactic nuclei? Colliding galaxies? Associated with gamma ray bursts? Exotic - Top-Down **Annihilation of topological defects?** Wimpzillas – heavy dark matter? Z bursts? New physics?

The Pierre Auger Project

A High Statistics Study of

The Highest Energy Cosmic Rays

>10¹⁹ eV

Energy Spectrum - Direction - Composition

Two Large Air Shower Detectors

Argentina (under construction)

USA

Collaboration: 15 Countries/50 institutions

The Auger Collaboration

Argentina Mexico

Australia Poland

Brazil Slovenia

Czech Republic Spain

France United Kingdom

Germany USA

Greece Vietnam

Italy

50 Institutions, >250 Scientists

Air Shower Detector Techniques And their features

Particle Detector Array

100% duty cycle
Uniform sky coverage
Simple robust detectors

Mass determination using rise time, muon/em Energy determination depends on simulation

Fluorescence Detector

Calorimetric energy measurement
Direct view of shower development
Good angular resolution (< 1°)
Need correction for atmospheric attenuation
10% Duty factor

Pierre Auger Observatory

Combines strengths of

Surface Detector Array and Fluorescence Detectors

Hybrid detector:

- Independent measurement techniques allow cross calibration and control of systematics
- More reliable energy and angle measurement
- Primary mass measured in complementary ways
- Uniform sky coverage

Auger Observatory Southern Site

NORTE Lagrampa El Sosneado Diamante COIHUECO ada Coihuec The Engineering Array El Chacay COLOR Malargüe A 212 El Salitral-Pto. 1 Virgen del Carmen El Salitral-Pto. Co. de las Cabras

1.5 Km spacing. 7000 km² str

24 fluorescence telescopes in four enclosures

The Auger Surface Detector

Surface Detector Stationwith curious local residents

Fluorescence Detector Building at Los Leones

Auger Fluorescence Detector

24 telescope units3.4 meter dia. Mirrors440 PMTs per camera

Fluorescence Building at Coihueco

The Auger Campus

Detector Assembly Building

Cerenkov detector tanks being prepared for deployment

Auger Center Building

Observatory Staff

Observatory Construction Plan and Project Status

- Engineering Array two years -complete
 - 32 surface detector stations
 - 2 fluorescence detector prototype telescopes
 - 80 hybrid events
 - Surface array in operation for > one year
- Full Construction three to four years underway
 - Designs refined based on experience with the engineering array.
 - Pre-production of 100 sets of surface detector components nearly complete.
 - Deployment of pre-production detector stations underway – 46 tanks deployed.
 - Two (of four) fluorescence buildings complete installation of the first 12 telescopes underway.

Engineering Array Events

Event 308314

Zenith angle 5.8 degrees

Event 308314

Zenith angle 5.8 degrees

Event 193485 Zenith angle 75.8 degrees

Event 193485 Zenith angle 75.8 degrees

Hybrid Event 3 EeV

Production Deployment

Auger at Fermilab

- Project management office
- Surface detector development
- Surface detector electronics development
- Data acquisition data mirror site

Physicists:

Aaron Chou (RA)
Hank Glass

Carlos Hojvat

Paul Mantsch

Cathy Newman-Holmes

Lou Voyvodic (retired)

Project management staff:

Marc Kaducak – project engineer

Chez Jach - cost & schedule

Jamie Blowers - QA (part time)

Rafael Coll - ES&H (part time)

Sarah McCook - clerical

Management Organization

Summary

- Exciting physics Addresses one of the eleven science questions for the new century – NAS – "Connecting Quarks with the Cosmos".
- A strong collaboration.
- The Engineering Array is finished
- The detector performance exceeds original expectations.
- Full construction is underway.
- We will finish in 2005 funding flow permitting.